INDIAN SCHOOL MUSCAT DEPARTMENT OF MATHEMATICS CLASS TEST – OMR FORMAT

CLASS: X TOPIC: QUADRATIC EQUATIONS

1.	Which of the following is r	Which of the following is not a quadratic equation?				
	A) $2(x-1)^2 =$	B) $2x - x^2 = x^2 + 5$	C) $(\sqrt{2}x + \sqrt{3})^2 + x^2 = 3x^2 - 5x$	D) $(x^2 + 2x)^2 =$		
	$4x^2 - 2x + 1$		$3x^2 - 5x$	$x^4 + 3 + 4x^3$		
2.	Which of the following equations has 2 as a root?					
	A) $x^2 - 4x + 5 = 0$	$B) x^2 + 3x - 12 = 0$	$C) 2x^2 - 7x + 6 = 0$	D) $3x^2 - 6x - 2 = 0$		
3.	If $\frac{1}{2}$ is a root of the given equation $x^2 + kx - \frac{5}{4} = 0$, then the value of k is					
	A) 2	B) -2	C) $\frac{1}{4}$	D) $\frac{1}{2}$		
4.	Which of the following equations has the sum of its roots as 3?					
	A) $2x^2 - 3x + 6 = 0$	$B) -x^2 + 3x - 3 = 0$	C) $\sqrt{2}x^2 - \frac{3}{\sqrt{2}}x + 1 = 0$	$D) 3x^2 - 3x + 3 = 0$		
5.	Value(s) of k for which the quadratic equation $2x^2 - kx + k = 0$ has equal roots is					
	A) 0 only	B) 4	C) 8 only	D) 0,8		
6.	The quadratic equation $2x^2 - \sqrt{5}x + 1 = 0$ has					
	A) two distinct real roots	B) two equal real roots	C) no real roots	D) more than two real roots		
7.	If $D=b^2-4ac>0$, then roots of the quadratic equation $ax^2+bx+c=0$ are					
	A) $\frac{-b \pm \sqrt{D}}{2a}$	$B) \frac{-b + \sqrt{D}}{2a}$	C) $\frac{-b-\sqrt{D}}{2a}$	D) $\frac{b \pm \sqrt{D}}{2a}$		
8.	The discriminant of the equation $2x^2 + 3\sqrt{2}x - 4 = 0$ is					
	A) 50	B) -14	C) $3\sqrt{2} + 32$	D) $3\sqrt{2} - 32$		
9.	The number of solutions for the equation $2^{2x^2-7x+5}=1$, is					
	A) 0	B) 1	C) 2	D) 4		
10.	If the roots of the equation $12x^2 + mx + 5 = 0$ are in the ratio 3: 2, then the positive value of m equals					
	A) $\frac{1}{12}$	B) $\frac{5}{12}$	C) 5√10	$D)\frac{5}{12}\sqrt{10}$		
11.	If the roots of $ax^2 + bx + c = 0$ are equal in magnitude but opposite in sign, then					
	A) $a = 0$	B) $b = 0$	C) $c = 0$	D) None of these		

12.	The number of real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is					
	A) 2	B) 1	C) 0	D) 3		
13.	If b^2-4ac is positive and a perfect square, then the roots are					
	A) real	B) real and distinct	C) real, different and rational	D) real, different and irrational		
14.	The roots of the equations $ax^2 + 2bx + c = 0$ and $bx^2 + 2\sqrt{a}cx + b = 0$ are simultaneously real, then					
	$A)\frac{b}{a}=c$	B) b = ac	$C) b^2 = ac$	D) $abc = 1$		
15.	Which among the following statements are true					
	A) Every quadratic equation has exactly one root	B)) Every quadratic equation has at least one real root	C)) Every quadratic equation has at least two roots	D)) Every quadratic equation has at most two roots		
16.	Which constant should be added to either side of the equation to solve the quadratic equation $x^2 + \sqrt{3}x - 5 = 0$ by the method of completion of squares?					
	A) $\frac{3}{4}$	B) $\frac{3}{16}$	C) $\frac{-3}{4}$	D) $\frac{-3}{16}$		
17.	The roots of the equation reducible to quadratic form given by $x + \frac{1}{x} = 2$ ($x \neq 0$) is					
	A) 2 and 1	B) 1 and -1	C) 1 and 1	D) -1 and -1		
18.	What is the maximum number of roots for a Bi-quadratic equation?					
	A) 3	B) 4	C)2	D)5		
19.	If the quadratic equation $mx^2 + 2x + m = 0$ has two equal roots, the values of m are					
	A) ±1	B) 0, 2	C) 0, 1	D) -1, 0		
20.	The root(s) of the quadratic equation $x^2 + 16 = 0$ is (are)					
	A) non real roots	B) ±4	C) -4	D) 4		